Abstract

Porcine epidemic diarrhea virus (PEDV) is a highly contagious enteric pathogen of swine. PEDV has been a major problem in the pig industry since its first identification in 1992. The aim of this study was to investigate the diversity, molecular characteristics, and phylogenetic relationships of PEDVs in field samples from Korea. Six PEDVs were identified from the field samples, and the full spike (S) glycoprotein gene sequences were analyzed. A phylogenetic analysis of the S gene sequences from the six isolates revealed that they were clustered into the G2b subgroup with genetic distance. The genetic identity of the nucleotide sequences and deduced amino acid sequences of the S genes of those isolates was 97.9-100% and 97.4-100%, respectively. A BLAST search for new PEDVs revealed an identity greater than 99.5% compared to the highest similarity of two different Korean strains. The CO-26K equivalent (COE) epitope had a 521H→Y/Q amino acid substitution compared to the subgroup G2b reference strain (KNU-1305). The CNU-22S11 had 28 amino acid substitutions compared to the KNU-1305 strain, which included two newly identified amino acid substitutions: 562S→F and 763P→L in the COE and SS6 epitopes, respectively. Furthermore, the addition and loss of N-linked glycosylation were observed in the CNU-22S11. The results suggest that various strains of PEDV are prevalent and undergoing evolution at swine farms in South Korea and can affect receptor specificity, virus pathogenicity, and host immune system evasion. Overall, this study provides an increased understanding of the prevalence and control of PEDV in South Korea.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call