Abstract
Two novel QTL for resistance to Pythium ultimum var. ultimum were identified in soybean using an Illumina SNP Chip and whole genome re-sequencing. Pythium ultimum var. ultimum is one of numerous Pythium spp. that causes severe pre- and post-emergence damping-off of seedlings and root rot of soybean [Glycine max (L.) Merr.]. The objective of this research was to identify quantitative trait loci (QTL) for resistance to P. ultimum var. ultimum in a recombinant inbred line population derived from a cross of 'Magellan' (moderately resistant) and PI 438489B (susceptible). Two different mapping approaches were utilized: the universal soybean linkage panel (USLP 1.0) and the bin map constructed from whole genome re-sequencing (WGRS) technology. Two genomic regions associated with variation in three disease-related parameters were detected using both approaches, with the bin map providing higher resolution. Using WGRS, the first QTL were mapped within a 350-kbp region on Chr. 6 and explained 7.5-13.5% of the phenotypic variance. The second QTL were positioned in a 260-kbp confidence interval on Chr. 8 and explained 6.3-16.8% of the phenotypic variation. Candidate genes potentially associated with disease resistance were proposed. High-resolution genetic linkage maps with a number of significant SNP markers could benefit marker-assisted breeding and dissection of the molecular mechanisms underlying soybean resistance to Pythium damping-off in 'Magellan.' Additionally, the outputs of this study may encourage more screening of diverse soybean germplasm and utilization of genome-wide association studies to understand the genetic basis of quantitative disease resistance.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have