Abstract

Dissolved organic nitrogen (DON) is a component of wastewater with a negative influence on the environment. The removal of DON is conducted through the anoxic/oxic (A/O) and anammox processes. However, the mechanisms and chemical preferences in the removal of DON compounds have not been understood and compared so far. This study, for the first time, comparatively investigated the molecular-level characteristics of DON during both processes by using FT-ICR MS (Fourier transform ion cyclotron resonance mass spectrometry). The results indicated that the number of DON formulas increased from 1844 to 1935 during A/O process, and from 2784 to 3242 during anammox process, highlighting the increase in complexity of DON after undergoing both processes. DON with high saturation and aliphatic structures was removed by A/O process, whereas highly unsaturated and aromatic structures were removed by anammox process. For DON without S atom, Lignin-like and tannin-like ones were resistant to both processes and protein-like and condensed aromatic structures were resistant to anammox process. The complementarity of these two processes provided a sequential combination with sufficient theoretical support to improve DON removal efficiency. PRACTITIONER POINTS: Molecular components of dissolved organic nitrogen characterized by ESI FT-ICR MS. DON removal preferences of A/O and anammox processes evaluated. A/O and anammox processes are effective to remove aliphatic and aromatic DON, respectively. Complementarity in removal preferences of A/O and anammox processes can remove recalcitrant DON of each other. Sequential A/O and anammox processes can improve DON removal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call