Abstract

Dissolved organic matters (DOMs) in fine particulate matters (PM2.5) play a crucial role in global climate change and carbon cycle. However, the chemical components of DOMs are poorly understood due to its ultra-complexity. In this study, DOMs in atmospheric PM2.5 collected during the heating period in coastal city Dalian were analyzed with ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometer, and the molecular composition was characterized. A large number of monoisotopic molecular formulas were assigned to DOMs, which could be classified into CHO, CHNO, CHOS, and CHNOS subgroups. A total of 4228 molecular formulas were identified in DOMs collected in hazy days, while only 2313 components were found in DOMs collected in normal days. CHO group was the dominated components in normal days, whereas CHNO group gave significantly higher contributions in hazy days. The S-containing (CHOS and CHNOS) groups posed the highest relative percentages in both normal and hazy days. In addition, potential emission sources were discussed according to the chemical component analysis. The van Krevelent diagram illustrated that lignin-like and protein/amino sugar family species were the most abundant subclasses in DOMs; and 78% and 94% of DOMs in atmospheric PM2.5 collected from Dalian could come from biogenic origins in hazy and normal days, respectively. More compounds in hazy days were derived from anthropogenic emissions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call