Abstract
The single rRNA operon (arnS-arnL) of the hyperthermophilic archaeon Aeropyrum pernix K1 was sequenced. The DNA sequence data and detailed RNA analyses disclosed an unusual feature: the presence of three introns at hitherto undescribed insertion positions within the rRNA genes. The 699-nucleotide (nt) intron Ialpha was located at position 908 (Escherichia coli numbering [H. F. Noller, Annu. Rev. Biochem. 53:119-162, 1984]) of the 16S rRNA, while the 202-nt intron Ibeta and 575-nt intron Igamma were located at positions 1085 and 1927 (E. coli numbering), respectively, of the 23S rRNA. They were located within highly conserved sites which have been implicated as crucial for rRNA function in E. coli. All three introns were remarkably AT rich (41.5 to 43.1 mol% G+C) compared with the mature rRNAs (67.7 and 69.2 mol% G+C for 16S and 23S rRNAs, respectively). No obvious primary sequence similarities were detected among them. After splicing from rRNA transcripts in vivo, a large quantity of intronic RNAs were stably retained in the linear monomeric form, whereas a trace of topoisomeric RNA molecules also appeared, as characterized by their behavior in two-dimensional gel electrophoresis. Secondary structural models of the Ialpha-, Ibeta-, and Igamma-containing rRNA precursors agree with the bulge-helix-bulge motif. Two of the introns, Ialpha and Igamma, contained open reading frames whose protein translation exhibited no overall similarity with proteins reported so far. However, both share a LAGLI-DADG motif characteristic of homing endonucleases.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have