Abstract

White spot syndrome virus (WSSV) can cause a contagious, high virulent and pandemic disease for crustaceans, especially shrimps. However, the molecular mechanism of WSSV pathogenesis remains unclear. Flotillins are lipid raft-associated proteins, which mainly include flotillin-1 and flotillin-2. They are involved in the formation of large heteromeric protein complexes engaged in diverse signalling pathways at the membrane-cytosol interface. They defined a clathrin-independent endocytic pathway in mammalian cells. Our previous studies suggested that shrimp flotillin-2 might mediate endocytosis involved in WSSV infection. To further explore the function of shrimp flotillin, a flotillin-1 homologous, Lvflotillin-1A was identified and characterized in Litopenaeus vanamei. The transcription of Lvflotillin-1A showed a significant decline at 12h post-infection, followed by complete recovery and a slight up-regulation after the WSSV challenge. Gene silencing revealed that inhibition of Lvflotillin-1A raised the virus infection, suggesting Lvflotillin-1A might play an important role in shrimp immunity. Furthermore, co-immunoprecipitation and immunofluorescence illustrated that Lvflotillin-1A and Lvflotillin-2 could form hetero-oligomers, and co-expression promoted the accumulation of intracellular vesicles. The study revealed that WSSV might up-regulate Lvflotillin-2 expression and alter the subcellular location of Lvflotillin-1 protein to facilitate virus infection. These results will provide information for understanding the interaction between WSSV and shrimp.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call