Abstract

β-Thymosins participate in numerous biological activities, including cell proliferation and differentiation, wound healing, and anti-inflammatory and antimicrobial activities. Many studies have investigated vertebrate β-thymosins, whereas few reports have focused on invertebrate β-thymosins. In this study, nine isoforms of β-thymosins (PcThy-1 to PcThy-8) were identified from the red swamp crayfish Procambarus clarkii. The isoforms contained different numbers of the thymosin β actin-binding motif. PcThy-1 contained one thymosin β actin-binding motif, whereas PcThy-8 contained eight motifs. Western blot analysis with anti-PcThy-4 antibody showed that three to six isoforms were present in one tissue, and PcThy-4, PcThy-5, PcThy-6, and PcThy-7 were the main isoforms in several tissues. Time course expression analysis of PcThys at the protein level showed that PcThy-4 was upregulated in hemocytes and gills after white spot syndrome virus (WSSV) challenge. PcThy-4, which contained four thymosin β actin-binding motifs, was selected for further research. Tissue distribution analysis by quantitative real-time PCR showed that PcThy-4 was present in tissues of the hemocytes, heart, hepatopancreas, gills, stomach, and intestine at the transcriptional level. Transcriptional expression profiles showed that PcThy-4 was upregulated after WSSV challenge. In vivo RNAi and protein injection assay results showed that PcThy-4 inhibited the replication of WSSV in crayfish and enhanced the survival rate after WSSV infection. Furthermore, PcThy-4 promoted hemocyte phagocytosis of WSSV. Overall, results suggested that PcThys protected crayfish from WSSV infection and played an important role in antiviral immune response.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call