Abstract
An approach to the synthesis of the novel molecular brushes with a polyimide (PI) backbone and poly(ε-caprolactone) (PCL) side chains was developed. To obtain such copolymers, a combination of various synthesis methods was used, including polycondensation, atom transfer radical polymerization (ATRP), ring opening polymerization (ROP), and Cu (I)-catalyzed azide-alkyne Huisgen cycloaddition (CuAAC). ATRP of 2-hydroxyethyl methacrylate (HEMA) on PI macroinitiator followed by ROP of ε-caprolactone (CL) provided a “brush on brush” structure PI-g-(PHEMA-g-PCL). For the synthesis of PI-g-PCL two synthetic routes combining ROP and CuAAC were compared: (1) polymer-analogous transformations of a multicenter PI macroinitiator with an initiating hydroxyl group separated from the main chain by a triazole ring followed by ROP of CL, or (2) a separate synthesis of macromonomers with the desirable functional groups (polyimide with azide groups and PCL with terminal alkyne groups), followed by a click reaction. Results showed that the first approach allows to obtain graft copolymers with a PI backbone and relatively short PCL side chains. While the implementation of the second approach leads to a more significant increase in the molecular weight, but unreacted linear PCL remains in the system. Obtained macroinitiators and copolymers were characterized using 1H NMR and IR spectroscopy, their molecular weight characteristics were determined by SEC with triple detection. TGA and DSC were used to determine their thermal properties. X-ray scattering data showed that the introduction of a polyimide block into the polycaprolactone matrix did not change the degree of crystallinity of PCL.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.