Abstract

Ten barley samples containing varied protein contents were subject to malting followed by mashing to investigate molecular effects of both barley starch and starch- protein interactions on malting and mashing performances, and the underlying mechanism. Starch granular changes were examined using differential scanning calorimetry and scanning electron microscopy. The molecular fine structures of amylose and amylopectin from unmalted and malted grain were obtained using size-exclusion chromatography. The results showed that both amylose and amylopectin polymers were hydrolyzed at the same time during malting. Protein and amylose content in both unmalted and malted barley significant negatively correlated with fermentable sugar content after mashing. While protein content is currently the main criterion for choosing malting varieties, this study shows that information about starch molecular structure is also useful for determining the release of fermentable sugars, an important functional property. This provides brewers with some new methods to choose malting barley.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.