Abstract
Molecular cloning of the channel catfish FSH receptor is reported together with temporal changes in the gene expression throughout a reproductive cycle. A cDNA encoding the receptor was isolated from the testis using reverse transcription-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE) procedures. The cDNA coded for a 662-amino acid protein that was most identical (51%-59%) to salmon gonadotropin receptor I and the FSH receptors of higher vertebrates, and less identical to LH receptors and thyrotropin receptors (45%-49% and 46%-47%, respectively). In addition, PCR analysis of the genomic DNA showed the absence of the LH receptor-specific intron. Expression of the channel catfish FSH receptor gene was highly restricted to the testis and ovary, except for a low-level expression in the spleen. Transfected COS cells expressed an active recombinant receptor as determined by the ligand-specific activation of a cAMP-responsive reporter gene (luciferase). The recombinant receptor was activated by human FSH and, to a small extent, hCG. Seasonal changes in the ovarian expression of the FSH receptor gene, examined by measuring the transcript abundance by quantitative real-time RT-PCR, showed a rise around the time of onset of ovarian recrudescence and a decrease prior to spawning. This pattern of seasonal expression of FSH receptor differs significantly from that of the LH receptor, which we reported recently. The differential expression of the two gonadotropin receptor genes, in addition to the differential secretion of the gonadotropic hormones, seem to be critical for the regulation of steroidogenesis and other gonadal physiological processes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have