Abstract

Highly ordered arrays of nanosized GaAs-based dots were successfully prepared on GaAs (001) substrates by molecular-beam epitaxy using selected area growth. Selected area growth employed alumina nanochannel array (NCA) templates formed by anodic oxidation, bonded to the GaAs substrates. Homogeneous GaAs dots, as well as compositionally modulated heterostructures within the nanosized dots, were demonstrated. In the latter case, multilayer InGaAs/GaAs heterostructured nanodot arrays were fabricated. Dot growth occurred only as defined by the template mask, resulting in a hexagonal lattice of dots with 100 nm period spacing, with dots retaining the circular lateral shape of the pores as determined by the NCA template pore size; dot diameters were adjustable from 45 to 85 nm for a lattice period of 100 nm. Cathodoluminescence spectra from an InGaAs/GaAs 10×10 dot array clearly showed an emission peak at 920 nm (5 K), confirming the formation of a high-quality InGaAs/GaAs quantum dot array.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.