Abstract

Investigation of the intrinsic H-bonding pattern of the guanine complex with a sizable segment (from Asn43 to Glu46) of the primary recognition site (PRS) in RNase T1 at the B3LYP/6-311G(d,p) level of theory enables the electronic density characteristics of the H-bonding patterns of the guanine-PRS complexes to be identified. The perfect H-bonding pattern in the guanine recognition site is achieved through the guanine complex interactions with the large segment of the PRS. Two significant short H-bonds, O epsilon 1...HN1 and O epsilon 2...HN2, have been identified. The similar short H-bond distances found in the anionic GC- base pair and in this study suggest that the short hydrogen-bond distances may be characteristic of the multiple H-bonded anionic nucleobases. The H-bonding energy distribution, the geometric analysis of the H-bonding pattern, and the electron structure characteristics of the H-bonds in the guanine PRS of RNase T1 all suggest that the O epsilon 1...HN1 and O epsilon 2...HN2 side-chain H-bonds dominate the binding at the guanine recognition site of RNase T1. Also, the geometry evidence, the electron structure characteristics, and the properties of the bond critical points of the H-bonds reveal that the side-chain H-bonding and the main-chain H-bonding are mutually intensifying. Thus the positive cooperativity between Asn43 to Tyr45 and Glu46 is proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.