Abstract
Recent progress in establishing local order in polycarbonate-like glasses using rotational echo double resonance and centerband-only detection of exchange solid-state nuclear magnetic resonance (NMR) has stimulated a renewed attempt to connect molecular motion within glassy polymers and the mechanical properties of the glass. We have in fact established a correlation between molecular motion characterized by NMR and the mechanical secondary relaxation (tan δ) for nine polycarbonate-like glasses. All of the NMR and mechanical data are for T ≪ Tg. The resulting structural insights suggest that the chains of these polymers are simultaneously both Flory random coils and Vol'kenstein bundles. The cooperative motions of groups of bundles can be described qualitatively by a variety of constrained-kinetics models of the glass. All of the models share a common trait for large-amplitude motion: an exponential increase in the time required for an inter-bundle dilation event with a linear increase in bundle group size. This dependence and a locally ordered Vol'kenstein bundle lead to an understanding of the surprising 60° (K) shift of tan δ to higher temperature for ring-fluoro-polycarbonate relative to that of polycarbonate by the apparently minor substitution of a fluorine for a hydrogen on every fourth ring.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have