Abstract

SummaryThe NRT1/PTR family of proton-coupled transporters are responsible for nitrogen assimilation in eukaryotes and bacteria through the uptake of peptides. However, in the majority of plant species members of this family have evolved to transport nitrate as well as additional secondary metabolites and hormones. In response to falling nitrate levels, NRT1.1 is phosphorylated on an intracellular threonine that switches the transporter from a low to high affinity state. Here we present both the apo and nitrate bound crystal structures of Arabidopsis thaliana NRT1.1, which together with in vitro binding and transport data identify a key role for His356 in nitrate binding. Our data support a model whereby phosphorylation increases structural flexibility and in turn the rate of transport. Comparison with peptide transporters further reveals how the NRT1/PTR family has evolved to recognize diverse nitrogenous ligands, whilst maintaining elements of a conserved coupling mechanism within this superfamily of nutrient transporters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.