Abstract

The chiral-selective aminoacylation of an RNA minihelix is a potential progenitor to modern tRNA-based protein synthesis using l-amino acids. This article describes the molecular basis for this chiral selection. The extended double helical form of an RNA minihelix with a CCA triplet (acceptor of an amino acid), an aminoacyl phosphate donor nucleotide (mimic of aminoacyl-AMP), and a bridging nucleotide facilitates chiral-selective aminoacylation. Energetically, the reaction is characterized by a downhill reaction wherein an amino acid migrates from a high-energy acyl phosphate linkage to a lower-energy carboxyl ester linkage. The reaction occurs under the restriction that the nucleophilic attack of O, from 3′-OH in the terminal CCA, to C, from C=O in the acyl phosphate linkage, must occur at a Bürgi-Dunitz angle, which is defined as the O–C=O angle of approximately 105°. The extended double helical form results in a steric hindrance at the side chain of the amino acid leading to chiral preference combined with cation coordinations in the amino acid and the phosphate oxygen. Such a system could have developed into the protein biosynthetic system with an exclusively chiral component (l-amino acids) via (proto) ribosomes.

Highlights

  • A distinguishing characteristic of the biological system is that the building blocks are composed exclusively of homochiral molecules

  • New roles of non-coding RNA have recently been discovered [3,4,5], the most well-known and primary function of RNA is to mediate the genetic information encoded in DNA in the central dogma: mRNAs are transcribed from DNA, after which amino acids are incorporated into proteins on ribosomes via aminoacyl-tRNAs, according to the nucleotide sequences found on the mRNAs [6,7]

  • In the current biological system, tRNA aminoacylation is the step where RNA and amino acids interact with each other; the correspondence between RNA codons and amino acids is known as the genetic code [14]

Read more

Summary

Introduction

A distinguishing characteristic of the biological system is that the building blocks are composed exclusively of homochiral molecules. The non-enzymatic aminoacylation system is composed of 3 molecules: an RNA minihelix (amino acid acceptor), an aminoacyl phosphate nucleotide (amino acid donor), and a bridging nucleotide. These molecules constitute an extended double-helix structure, and all of the base pairings hybridizing each chain are of the Watson-Crick type. TRNAs charged with L-amino acids could form proteins composed of L-amino acids by using proto-ribosomes much the same as modern proteins In this context, the chiral-selective aminoacylation of RNA is a crucial development in consideration of the origin of amino acid homochirality in biological systems [19]. The putative evolutionary story is described in detail in the literature [25,26,27,28], and here, I would like to focus on the molecular mechanism determining the chiral selectivity of the reaction

Chemical Features of Aminoacylation Reactions
Findings
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.