Abstract

In certain metalloenzymes, multimetal centers with appropriate primary/secondary coordination environments allow carbon-carbon coupling reactions to occur efficiently and with high selectivity. This same function is seldom realized in molecular electrocatalysts. Herein we synthesized rod-shaped nanocatalysts with multiple copper centers through the molecular assembly of a triphenylphosphine copper complex (CuPPh). The assembled molecular CuPPh catalyst demonstrated excellent electrochemical CO2 fixation performance in aqueous solution, yielding high-value C2+ hydrocarbons (ethene) and oxygenates (ethanol) as the main products. Using density functional theory (DFT) calculations, in situ X-ray absorption spectroscopy (XAS) and quasi-in situ X-ray photoelectron spectroscopy (XPS), and reaction intermediate capture, we established that the excellent catalytic performance originated from the large number of double copper centers in the rod-shaped assemblies. Cu-Cu distances in the absence of CO2 were as long as 7.9 Å, decreasing substantially after binding CO2 molecules indicating dynamic and cooperative function. The double copper centers were shown to promote carbon-carbon coupling via a CO2 transfer-coupling mechanism involving an oxalate (OOC-COO) intermediate, allowing the efficient production of C2+ products. The assembled CuPPh nanorods showed high activity, excellent stability, and a high Faradaic efficiency (FE) to C2+ products (65.4%), with performance comparable to state-of-the-art copper oxide-based catalysts. To our knowledge, our findings demonstrate that harnessing metalloenzyme-like properties in molecularly assembled catalysts can greatly improve the selectivity of CO2RR, promoting the rational design of improved CO2 reduction catalysts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.