Abstract
Molluscan insulin-related peptides (MIRP) play a crucial role in various biological processes, including reproduction and larval development in mollusk species. To investigate the involvement of MIRP in the ovarian development of Pacific abalone (Haliotis discus hannai), the Hdh-MIRP3 was cloned from cerebral ganglion (CG). Hdh-MIRP3 cDNA was 993 bp long, encoded a 13.22 kDa peptide, comprising 118 amino acids. Fluorescence in situ hybridization confirmed the localization of Hdh-MIRP3 in the CG and ovary. Molecular docking revealed that Hdh-MIRP3 binds to the N-terminal region of Hdh-IRP-R. Tissue expression analysis showed the highest Hdh-MIRP3 expression in the CG, followed by ovarian tissue. Hdh-MIRP3 expression was significantly upregulated in the CG and ovary during the ripe stage of seasonal ovarian development and in effective accumulative temperature conditioned abalone. Furthermore, siRNA silencing of Hdh-MIRP3 significantly downregulated the expression of four reproduction-related genes, including Hdh-GnRH, Hdh-GnRH-R, Hdh-IRP-R, and Hdh-VTG in both the CG and ovary, and Hdh-MIRP3 as well. These results indicate that Hdh-MIRP3 acts as a regulator of ovarian development in Pacific abalone. Additionally, expression analysis indicated that Hdh-MIRP3 plays a role in embryonic and larval development. Overall, the present findings elucidate the role of Hdh-MIRP3 in reproductive development in female Pacific abalone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.