Abstract
Introduction. The World Health Organization estimates that as of 2019, more than 296 million people were living with chronic hepatitis B virus (HBV) infection. The prevalence of HBsAg-negative, occult form of the disease in blood donors varies depending on the region of the world and the sensitivity of the methods of analysis used. Considering that the genetic diversity of viruses demonstrates space and time variations and taking into account that the genetic profile of isolates in key groups, which may turn into a source of the pathogen spread, is important for forecasting of the epidemiological situation, the attention should be given to identification of HBV genotypes currently circulating among regular blood donors in regions of the Russian Federation.
 The aim of this work was molecular and genetic characterization of HBV genomes identified in HBsAg-negative blood donors in the Ural Federal District.
 Materials and methods. The study material was 1400 plasma samples obtained from HBsAg-negative blood donors in Ural Federal District. The study included the testing for HBsAg, anti-HBs IgG and anti-HBcore IgG antibodies, HBV DNA. For all identified HBV DNA containing samples, sequencing and analysis of the nucleotide sequences of the complete HBV genomes were performed.
 Results. The prevalence of HBV DNA was 4.93%, including 4 (0.28%) cases of false occult hepatitis B. Among anti-HBcore IgG-positive samples, HBV DNA was found in 18.08% of cases, while in persons with detected HBV DNA the anti-HBcore IgG positivity rate was 46.38%. In 8.69% of the isolates, anti-HBs IgG antibodies and viral DNA were detected simultaneously in the absence of anti-HBcore IgG. Based on phylogenetic analysis, HBV subgenotypes distribution in HBsAg-negative blood donors was as follows: D3 53.62%, D2 21.74%, D1 18.84%, C2 5.8%. The high variability in the S, C, P regions of the virus genome in the examined group was shown. In all cases of HBsAg-negative chronic HBV infection identified in blood donors, viral sequences contained at least one amino acid substitution in positions, mutations in which are associated with immune escape. In 3 (4.35%) cases mutations in reverse transcriptase region of P gene that are associated with resistance to the following drugs were identified: lamivudine, telbivudine, entecavir. Mutations in the preCore/Core regions that contribute to the progression of liver disease were also identified.
 Conclusion. Occult HBsAg-negative chronic HBV infection poses a threat of HBV transmission through transfusion of blood and its components due to the extremely low viral load, which does not allow the virus to be detected using routinely used diagnostic kits. The situation can be exacerbated by the abundance and diversity of virus amino acid substitutions that we have identified, including immune escape mutations, drug resistance mutations, and mutations that contribute to the progression of the disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of microbiology, epidemiology and immunobiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.