Abstract

Reaction of trivalent [((Ad,tBuArO)3tacn)U] (1) with 2,2'-bipyridine (bipy) yields [((Ad,tBuArO)3tacn)U(bipy)] (2) and subsequent reduction of 2 with KC8 in the presence of Kryptofix222 furnishes [K(2.2.2-crypt)][((Ad,tBuArO)3tacn)U(bipy)] (3). Alternatively, complex 3 can be synthesized from 1 by addition of [K(bipy)] in the presence of the cryptand. New complexes 2 and 3 are characterized by a variety of spectroscopic, electrochemical, and magnetochemical methods, single-crystal X-ray diffraction, computational methods, and CHN elemental analysis. Structural analyses reveal a bipyridine radical (bipy•-) ligand in 2 and a dianionic (bipy2-) species in 3. Complex 3 represents a rare example of an isolated and unambiguously characterized bipy2- ligand coordinated to a uranium ion. The electronic structure assignments are supported by UV/vis/NIR and EPR spectroscopy, as well as SQUID magnetometry. The results of CASSCF calculations indicate multiconfigurational ground states for complexes 2 and 3. The electronic ground state for 2 consists of an open-shell doublet U4+(bipy•-) state (91%) and a closed-shell doublet U5+(bipy2-) state (9%). The almost degenerate multiconfigurational ground state for 3 was found to be composed of an open-shell singlet and pure triplet state 0.06 eV higher in energy, both resulting from the U4+(5f2) (bipy2-) configuration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.