Abstract

Both cadmium (Cd) contamination and boron (B) deficiency in farmland soils pose a threat to the yield and quality of crops in Southern China. The present study investigated the mechanisms by which B reduces Cd accumulation in rice (Oryza sativa) seedlings. Boron supplementation partially restored the decline in shoot and root biomass caused by Cd treatment (26% and 33%, respectively), with no significant difference between the B+Cd and control groups. We also found that B significantly reduced shoot and root Cd concentrations (by 64% and 25%, respectively) but increased Cd concentration (by 43%) and proportion (from 38% to 55%) in root cell walls. Transcriptome analysis and biochemical tests suggested that B supplementation enhanced lignin and pectin biosynthesis, pectin demethylation, and sulfur and glutathione metabolism. Moreover, B decreased the expression of some Cd-induced transporter-related genes (i.e., HMA2, Nramp1, and several ABC genes). These results indicate that B relieved Cd toxicity and reduced Cd accumulation in rice seedlings by restraining Cd uptake and translocation from root to shoot by improving Cd tolerance and chelation ability. These novel findings would benefit further investigations into how B influences Cd uptake, translocation, detoxification, and accumulation in crops.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.