Abstract
Cadmium (Cd) pollution and phosphate (Pi) deficiency are two important problems in some Asian countries, but the researches on effects and mechanisms of Pi deficiency on Cd uptake in rice are limited. Herein, 3-week-old rice seedlings were treated with 3 Pi levels (−Pi, +Pi, and +2Pi) under Cd stress for 3 weeks. The results showed that in the hydroponics experiments, Pi deprivation (−Pi) treatment significantly decreased Cd accumulation in rice seedlings but aggravated Cd phytotoxicity symptoms with decreased tillers, root length, shoot height, and dry weight. In contrast, Pi addition (+2Pi) treatment increased Cd accumulation but alleviated Cd phytotoxicity symptoms in rice seedlings. These results indicate that Pi physiologically regulates Cd accumulation and sensitivity in rice. Furthermore, -Pi treatment not only significantly decreased carbon (C) assimilation by reducing net photosynthesis rate and transpiration rate but also decreased glutathione (GSH) and phytochelatins (PCs) contents in rice seedlings. In addition, -Pi treatment significantly increased iron (Fe, a well-known competitive metal of Cd) accumulation in rice plantlets. Based on these results, we suggest that Pi deprivation decreases rice Cd uptake by competitively increasing Fe uptake and accumulation, Pi deprivation also enhances the sensitivity to Cd in rice plants by inhibiting biomass accumulation and reducing PCs synthesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.