Abstract
Brunner's glands are located in the submucosa of the proximal duodenum and are unique to mammalian species. The North American opossum (Didelphis virginiana) is generally regarded as a prototype marsupial that closely resembles fossil didelphids which can be placed at the beginning of mammalian evolution. The current investigation provided an opportunity for the analysis of secretory products from these glands in a species thought to be more closely related to earlier evolutionary forms. Extracts of Brunner's glands were subjected to SDS-PAGE and Western blotting. The results indicate the presence of two high molecular weight PAS-positive glycoprotein bands. In addition to these two PAS-positive bands, several other glycoprotein bands were detected in the high molecular weight range that bind several lectins which typically recognize O-linked carbohydrates indicative of mucus type glycoproteins. The same lectins bind to glandular structures in tissue sections. Comparison of lectin binding sites with the pyloric glands of the stomach and duodenal goblet cells indicates that Brunner's glands carbohydrate residues resemble those of the pyloric glands more closely than those of the duodenal goblet cells. The low cell turnover rate in Brunner's glands is in contrast to the rapid turnover rate of goblet cell precursors in the duodenal crypts. The mucus composition and the cell turnover rate correlate well with embryological data and suggest that Brunner's glands of Didelphis evolved from an epithelium more closely associated with the stomach than that of the duodenum as the topography of the gland would suggest.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.