Abstract

Mucins of the gastroduodenal junction are secreted by the mucous surface and mucus-producing glandular cells in the stomach, and by goblet cells and Brunner's glands in the duodenum. Developmental studies have demonstrated that Brunner's glands can arise from undifferentiated gastric epithelium and/or intestinal epithelium in the proximal duodenum. The aim of this study was to investigate the carbohydrate composition of mucins from this region and compare it with that of mucins from Brunner's glands to evaluate the probable evolution of mucins from these glands. Toward that end, paraffin sections from 13 mammalian species were stained by classic carbohydrate histochemistry and treated with 13 lectins. In general, the mucous surface cells of the stomach, pyloric glands, duodenal goblet cells, and Brunner's glands secretory epithelium had different lectin-binding patterns. However, the lectin-binding profile of the secretory epithelium of Brunner's glands resembled that of pyloric glands more closely than that of duodenal goblet cells and mucous surface cells of the stomach. Mucins from Brunner's glands and pyloric glands showed a greater terminal carbohydrate residue diversity than those of gastric mucous surface cells or duodenal goblet cells. The lectin-binding profile argues for the evolution of similar mucins from the epithelia of Brunner's glands and pyloric glands. The greater diversity of carbohydrate residues in mucins secreted by Brunner's glands suggests that their mucus is more adaptable. This may explain why Brunner's glands metaplasia rather than goblet cell metaplasia is seen in the mucosa adjacent to chronic intestinal ulcers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.