Abstract
Expression and functional properties of beta-adrenergic receptors (beta-ARs) were studied in rat collecting tubules isolated by microdissection. Reverse transcription-polymerase chain reaction experiments demonstrated that the beta 1- and beta 2-AR mRNAs, but not the beta 3-subtype, are expressed in the cortical collecting duct (CCD). Quantitation of mRNAs, carried out using mutant RNAs as internal standards, further showed that beta 1- and beta 2-ARs transcripts are present at comparable amounts in CCD (3,000-4,000 copies/mm of tubular length), but reach 6-8 times lower levels in the outer medullary collecting duct (OMCD: beta 1, 480 +/- 180; beta 2, 590 +/- 110 copies/mm of tubular length). Functional studies, carried out in CCD, corroborated the expression of these two receptor subtypes. The rank order of potency of beta-agonists for stimulating adenosine 3',5'-cyclic monophosphate (cAMP) accumulation was isoproterenol > norepinephrine = epinephrine, and similar efficiencies were found for a beta 1- and a beta 2-antagonist to inhibit isoproterenol-dependent cAMP formation. Fura 2 fluorescence measurements revealed that isoproterenol (10 microM) induces a biphasic rise of intracellular free Ca2+ concentration ([Ca2+]i), consisting of an initial fast increase (delta [Ca2+]i = 122 nM) followed by a plateau phase (delta [Ca2+]i = 58 nM). In the absence of basolateral Ca2+, the initial peak was still observed, suggesting intracellular Ca2+ release. Norepinephrine and epinephrine, as well as selective beta 1- and beta 2-agonists, also increased [Ca2+]i in CCD. Only slight [Ca2+]i variations were produced by isoproterenol in the OMCD (delta [Ca2+]i = 21 nM) and the cortical thick ascending limb (delta [Ca2+]i = 25 nM). These results show that both beta 1- and beta 2-ARs are expressed in the collecting tubule and that they predominate in the CCD. The two receptor subtypes contribute to cAMP accumulation induced by beta-agonists. They also trigger [Ca2+]i variations, indicating their possible coupling to several transduction pathways in the rat CCD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.