Abstract

K+ channels in the basolateral membrane of rat cortical collecting duct (CCD) are regulated by a cGMP-dependent protein kinase (J. Hirsch and E. Schlatter. Pfluegers Arch. 429: 338-344, 1995). Conflicting data exist on the effects of cGMP-activating agonists on Na+ transport in these cells. Thus we tested members of the family of peptides that increase intracellular cGMP [cardiodilatin/atrial natriuretic peptide (CDD/ANP), brain natriuretic peptide, C-type natriuretic peptide, urodilatin, guanylin, and uroguanylin], as well as bradykinin +/- CDD/ANP on membrane voltages (Vm) of principal cells of isolated rat CCD using the slow whole cell patch-clamp technique (E. Schlatter, U. Fröbe, and R. Greger. Pfluegers Arch. 421: 381-387, 1992). None of the agonists tested changed Vm significantly. There was also no effect of dibutyryl guanosine 3',5'-cyclic monophosphate (DBcGMP) on AVP-dependent lumen-to-bath Na+ flux, transepithelial voltage, or osmotic water permeability in isolated perfused rat CCD. Finally, CDD/ANP increased intracellular cGMP only in glomeruli but not in CCD. Thus the findings provide no evidence for control of electrogenic electrolyte transport by these natriuretic peptides in principal cells of rat CCD, and the agonist that physiologically regulates the cGMP-dependent K+ channels remains to be identified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.