Abstract

The gene, epn-1, encoding endothiapepsin (Epn), an aspartic protease (AspP) synthesized and secreted by the ascomycete fungus responsible for chestnut blight, Cryphonectria (Endothia) parasitica, was identified and characterized. Inspection of the nucleotide and deduced amino acid (aa) sequences revealed perfect agreement with the experimentally derived 330-aa sequence of mature Epn [Barkholt, Eur. J. Biochem. 167 (1987) 327–338] and an additional 89 aa of putative preprosequence. Of the nine fungal AspP characterized to date, Epn was found to be most closely related to aspergillopepsin and penicillopepsin (52% and 55% identity, respectively), proteases produced by the ascomycetes Aspergillus awamori and Penicillium janthinellum, and least related to proteases produced by the yeasts Candida albicans and Saccharomyces cerevisiae (27% and 26% identity, respectively). Epn production was found to be the same in isogenic virus-free and virus-containing strains, indicating that this AspP is not down-regulated by the presence of a hypovirulence-associated viral double-stranded RNA, as has been reported for several other secreted C. parasitica gene products. Strains containing multiple copies of epn-1 were obtained by transformation with a plasmid vector containing the cloned epn-1. One of these strains was shown to produce seven to ten times more Epn than the parental wild-type strain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.