Abstract

BackgroundMucopolysaccharidosis (MPS) refers to a group of lysosomal storage disorders for which seven types and 11 subtypes are currently recognized. Targeted next-generation sequencing (NGS) offers an important method of disease typing, diagnosis, prenatal diagnosis, and treatment. MethodsGene variations in 48 Chinese MPS patients were evaluated using NGS, and the pathogenicity of the DNA alterations was evaluated using PolyPhen2, SIFT, and Mutation Taster. The effect of amino acid substitution on protein structure was also assessed. ResultsFour pedigrees with MPS I (8.3%), 28 with MPS II (58.3%), two with MPS IIIA (4.2%), two with MPS IIIB (4.2%), six with MPS IVA (12.5%), one with MPS IVB (2.1%), and five with MPS VI (10.4%) were identified. Of the 69 variations identified, 11 were novel variants (three in IDUA, five in IDS, and three in GALNS), all of which were predicted to be disease-causing except for one, and were associated with impaired protein structure and function. ConclusionsTargeted NGS technology is effective for the gene-based testing of MPS disorders, which show high allelic heterogeneity. MPS II was the predominant form in Chinese. Our study expands the existing variation spectrum of MPS, which is important for disease management and genetic counseling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.