Abstract

BackgroundThe aim of extracorporeal albumin dialysis (ECAD) is to reduce endogenous toxins accumulating in liver failure. To date, ECAD is conducted mainly with the Molecular Adsorbents Recirculating System (MARS). However, single-pass albumin dialysis (SPAD) has been proposed as an alternative. The aim of this study was to compare the two devices with a prospective, single-centre, non-inferiority crossover study design with particular focus on reduction of bilirubin levels (primary endpoint) and influence on paraclinical and clinical parameters (secondary endpoints) associated with liver failure.MethodsPatients presenting with liver failure were screened for eligibility and after inclusion were randomly assigned to be started on either conventional MARS or SPAD (with 4 % albumin and a dialysis flow rate of 700 ml/h). Statistical analyses were based on a linear mixed-effects model.ResultsSixty-nine crossover cycles of ECAD in 32 patients were completed. Both systems significantly reduced plasma bilirubin levels to a similar extent (MARS: median −68 μmol/L, interquartile range [IQR] −107.5 to −33.5, p = 0.001; SPAD: −59 μmol/L, −84.5 to +36.5, p = 0.001). However, bile acids (MARS: −39 μmol/L, −105.6 to −8.3, p < 0.001; SPAD: −9 μmol/L, −36.9 to +11.4, p = 0.131), creatinine (MARS: −24 μmol/L, −46.5 to −8.0, p < 0.001; SPAD: −2 μmol/L, −9.0 to +7.0/L, p = 0.314) and urea (MARS: −0.9 mmol/L, −1.93 to −0.10, p = 0.024; SPAD: −0.1 mmol/L, −1.0 to +0.68, p = 0.523) were reduced and albumin-binding capacity was increased (MARS: +10 %, −0.8 to +20.9 %, p < 0.001; SPAD: +7 %, −7.5 to +15.5 %, p = 0.137) only by MARS. Cytokine levels of interleukin (IL)-6 and IL-8 and hepatic encephalopathy were altered by neither MARS nor SPAD.ConclusionsBoth procedures were safe for temporary extracorporeal liver support. While in clinical practice routinely assessed plasma bilirubin levels were reduced by both systems, only MARS affected other paraclinical parameters (i.e., serum bile acids, albumin-binding capacity, and creatinine and urea levels). Caution should be taken with regard to metabolic derangements and electrolyte disturbances, particularly in SPAD using regional citrate anti-coagulation.Trial registrationGerman Clinical Trials Register (www.drks.de) DRKS00000371. Registered 8 April 2010.Electronic supplementary materialThe online version of this article (doi:10.1186/s13054-015-1159-3) contains supplementary material, which is available to authorized users.

Highlights

  • The aim of extracorporeal albumin dialysis (ECAD) is to reduce endogenous toxins accumulating in liver failure

  • While in clinical practice routinely assessed plasma bilirubin levels were reduced by both systems, only Molecular Adsorbents Recirculating System (MARS) affected other paraclinical parameters

  • Application of single-pass albumin dialysis (SPAD) using conventional regional citrate anti-coagulation should be performed with caution and efficacy of treatment need to be monitored more carefully, especially in light of metabolic derangements, electrolyte balance and osmolality. This prospective, randomised, controlled crossover study demonstrated the investigated albumin dialysis procedures to be safe for temporary extracorporeal liver support

Read more

Summary

Introduction

The aim of extracorporeal albumin dialysis (ECAD) is to reduce endogenous toxins accumulating in liver failure. Large clinical trials have failed to demonstrate a survival benefit for patients treated with MARS [2, 4] Another ECAD technique, single-pass albumin dialysis (SPAD), has been proposed. While MARS is routinely prepared with 600 ml of a 20 % albumin solution according to manufacturers’ instructions, SPAD applications were reported to run on different albumin concentrations and dialysate flow rates [7, 8]. Comparison of both techniques requires clear definitions of SPAD construction. The equivalence of both devices in clinical routine was questioned, as chemical stabilizers added to albumin solutions may reduce performance, especially during SPAD, while they are partially removed by recirculation and purification in the MARS device [10, 11]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call