Abstract
Moisturizers are integral to daily skincare routines, reflecting the increasing trend among people towards cosmetic products, particularly for skin care. They significantly contribute to preserving skin health, particularly by regulating the epidermal barrier and moisture levels within the skin. This study aims to explore the moisturizing and antioxidant effect of skin barrier restoring cream Moiz MM (MZ) with shea butter, silkflo and vitamin E by investigating its protective effect against oxidative stress-induced cellular damage and therapeutic mechanisms in human keratinocytes cells (HaCaT). The invitro antioxidant activity of MZ was evaluated by DPPH, ABTS and NO assays. For the cell culture study, HaCaT cells were cultured and stimulated using H2O2 and then treated with different concentrations of MZ. Then, it was subjected to DCFH-DA staining, reverse transcriptase PCR and western blot analysis for the evaluation of various skin-moisture-related components in human keratinocyte cells. Type I procollagen was examined using ELISA technique. The results highlighted that oxidative stress in HaCaT cells decreased type I procollagen synthesis, while MZ treatment significantly increased the synthesis. Moreover, the viability of HaCaT cells was not affected in the presence of MZ, which demonstrates its non-toxic effect. Furthermore, MZ can counteract H2O2-mediated oxidative stress by enhancing the antioxidant enzyme activity such as superoxide dismutase and catalase, and decrease reactive oxygen species generation in skin cells. Additionally, MZ greatly promotes hyaluronic acid production by enhancing the expression of the hyaluronic acid synthase-1 gene and Aquaporin 3 protein. This study suggests that MZ has the potential to serve as a moisturizing and antioxidant skincare formula.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.