Abstract

The interactions of moisture with spin-on porous methylsilsesquioxane low- dielectric films are investigated by on-line and real-time measurement of the rates of moisture uptake and removal. A process model is developed that provides information on the dynamics of moisture adsorption and desorption processes. The process model can be used to find optimum purge temperature and gas purity condition for cleaning and drying of low- films. The cured films are compared with the partially etched and ashed films. The results show that these two films have similar moisture solubilities; however, the moisture diffusivity in the patterned film is considerably higher. Transmission electron microscope results show that the etching and ashing processes not only decrease the overall film thickness but also increase the film porosity. The process model also provides information on moisture distribution within the film; this information is important in characterizing residual moisture and interfacial adhesion. The results for a wide range of diffusivity show that thin cap layers with low moisture solubility effectively block moisture penetration into the film without slowing down the outgassing and moisture removal during the purge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.