Abstract
To date, most of the studies to evaluate moisture susceptibility of hot mix asphalt have been carried out by quantifying the degradation of the mix properties due to conditioning that simulates the action of moisture in the field. There is a need for research on the identification of moisture susceptible mixes which show the material loss in the wheel-path under the combined action of traffic and moisture. The objective of this study was to simulate and analyze the moisture induced material loss, and also to identify a mix with the potential of moisture induced material loss that has shown damage in the field but not under regular testing in the laboratory. The Moisture Induced Stress Tester (MIST), Ultrasonic Pulse Velocity (UPV), Dynamic Modulus in Indirect tensile mode, Indirect Tensile Strength (ITS), and Model Mobile Load Simulator (MMLS3) tests were utilized in the study. The effluent from the MIST was checked for the gradation of dislodged aggregates and the Dissolved Organic Carbon content. The results from the effluent analysis showed the loss of material and aggregate breakage from a moisture susceptible mix. A similar type of losses from the mix was also evident from MMLS3 loading under wet-hot conditions. The results of the mix mechanical properties showed that the use of MIST in combination with UPV or ITS is ab le to identify moisture susceptible mixes, in particular for mixes with the potential of aggregate breakage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Pavement Research and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.