Abstract

Metal-organic frameworks (MOF) with different Zn and Ni ratios (ZNOF-x) were synthesized by one-step solvothermal method without any surfactant. The ratio of Zn and Ni significantly affect the morphology of the ZNOF-x. Subsequently, MOF-derived ZnO-NiO (ZNO-x) was obtained after the calcination in air atmosphere. Gas sensing experimental was conducted on the as-fabricated ZNO-x sensors, and the measured results demonstrate that ZNO-x-based gas sensor presents lower acetone sensitivity but higher moisture-resistance performance with increasing the amount of Ni under ultra humid atmospheres. Especially, ZNO-5-based sensor exhibits a relative high sensitivity (1.31 to 1 ppm acetone in 95% RH atmosphere) and excellent water-vapour resistance performance (S95%/S11% > 0.8 at 175 °C), as well as good response and rapid response/recovery speed for the acetone sensing. Therefore, ZNO-5 is a promising material for acetone detecting in a high humid environment, which is a potential sensing material for the diagnosis of diabetes through exhaled gases analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.