Abstract
Studying the effects of moisture on the mechanical behaviour of single flax fibres, particularly in the transverse direction, is of key importance for the reliable use of biobased composites exposed to varying humidity levels. In this study, the apparent transverse Young’s modulus evolution of single flax fibres is recorded through repeated compressive load/unload cycles conducted at three Relative Humidity (RH) levels— 40%, 60%, and 80%. No significant changes in the apparent Young’s modulus, determined from the unloading, were observed during transverse compression cycling or under increasing humidity conditions. The absence of apparent softening with the rise in RH is attributed to the expression of two antagonistic mechanisms: wall softening due to plasticisation and structural stiffening linked to fibre compaction. Intriguingly, a noteworthy transverse stiffening is recorded at 40% RH following the humidification and drying of the fibre. This outcome is ascribed to a hornification phenomenon.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.