Abstract
The intensity of tropical cyclones (TCs) is expected to increase in response to greenhouse warming. However, how future climate change will affect TC frequencies and tracks is still under debate. Here, to further elucidate the underlying sensitivities and mechanisms, we study TCs response to different past and future climate forcings. Using a high-resolution TC-resolving global Earth system model with 1/4° atmosphere and 1/10° ocean resolution, we conducted a series of paleo-time-slice and future greenhouse warming simulations targeting the last interglacial (Marine Isotope Stage (MIS) 5e, 125 ka), glacial sub-stage MIS5d (115 ka), present-day (PD), and CO2 doubling (2×CO2) conditions. Our analysis reveals that precessional forcing created an interhemispheric difference in simulated TC densities, whereas future CO2 forcing impacts both hemispheres in the same direction. In both cases, we find that TC genesis frequency, density, and intensity are primarily controlled by changes in tropospheric thermal and moisture structure, exhibiting a clear reduction in TC genesis density in warmer hemispheres.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.