Abstract

This paper introduces a multi-objective variant of the marine predators algorithm (MPA) called the multi-objective improved marine predators algorithm (MOIMPA), which incorporates concepts from Quantum theory. By leveraging Quantum theory, the MOIMPA aims to enhance the MPA’s ability to balance between exploration and exploitation and find optimal solutions. The algorithm utilizes a concept inspired by the Schrödinger wave function to determine the position of particles in the search space. This modification improves both exploration and exploitation, resulting in enhanced performance. Additionally, the proposed MOIMPA incorporates the Pareto dominance mechanism. It stores non-dominated Pareto optimal solutions in a repository and employs a roulette wheel strategy to select solutions from the repository, considering their coverage. To evaluate the effectiveness and efficiency of MOIMPA, tests are conducted on various benchmark functions, including ZDT and DTLZ, as well as using the evolutionary computation 2009 (CEC’09) test suite. The algorithm is also evaluated on engineering design problems. A comparison is made between the proposed multi-objective approach and other well-known evolutionary optimization methods, such as MOMPA, multi-objective ant lion optimizer, and multi-objective multi-verse optimization. The statistical results demonstrate the robustness of the MOIMPA approach, as measured by metrics like inverted generational distance, generalized distance, spacing, and delta. Furthermore, qualitative experimental results confirm that MOIMPA provides highly accurate approximations of the true Pareto fronts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call