Abstract
In this work, HfO2 nanoparticles (np-HfO2) are embedded within a spin-on glass (SOG)-based oxide matrix and used as a charge trapping layer in metal–oxide–high-k–oxide–silicon (MOHOS)-type memory applications. This charge trapping layer is obtained by a simple sol–gel spin coating method after using different concentrations of np-HfO2 and low temperature annealing (down to 425 °C) in order to obtain charge–retention characteristics with a lower thermal budget. The memory's charge trapping characteristics are quantized by measuring both the flat-band voltage shift of MOHOS capacitors (writing/erasing operations) and their programming retention times after charge injection while correlating all these data to np-HfO2 concentration and annealing temperature. Since a large memory window has been obtained for our MOHOS memory, the relatively easy injection/annihilation (writing/erasing) of charge injected through the substrate opens the possibility to use this material as an effective charge trapping layer. It is shown that by using lower annealing temperatures for the charge trapping layer, higher densities of injected charge are obtained along with enhanced retention times. In conclusion, by using np-HfO2 as charge trapping layer in memory devices, moderate programming and retention characteristics have been obtained by this simple and yet low-cost spin-coating method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.