Abstract
Constructing specific microstructures and designing multicomponent composites are regarded as effective approaches to obtaining high-efficiency electromagnetic (EM) wave absorbing materials. Herein, core-shell structured Cu9S5/N-doped carbon@Co3S4/N-doped carbon (Cu9S5/NC@Co3S4/NC) composites derived from Cu3(BTC)2@ZIF-67 were synthesized by facile carbonization and sulfidation processes. The Cu9S5 particles are embedded in the interior and surface of the carbon skeleton, and the Co3S4/NC particles are uniformly distributed on the surface of the carbon skeleton. Compared with Cu9S5/NC and Co3S4/NC, the Cu9S5/NC@Co3S4/NC composite displays improved impedance matching properties and much better EM wave absorbing properties. The minimum reflection loss (RLmin) reaches −41.6 dB at 10.52 GHz with a thickness of 2 mm. In addition, the effective absorption bandwidth (EAB, RL < −10 dB) is 4.08 GHz (12.73–16.81 GHz) with un ultrathin thickness of 1.5 mm. This work offers a facile strategy for synthesizing MOF-derived metal sulfides/carbon composites as EM wave absorption materials with strong absorption properties, a wide absorption bandwidth and ultrathin thickness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.