Abstract

Modified metal–organic frameworks (MOFs) doping with enzymes exhibit high enzyme stability and catalytic performance, which is a research hotspot in the field of enzyme-based sensing. Although the MOF-enzyme constitutes a 3D structure in the nanoscale, the macroscopic assembly configuration still stays in 1D or 2D structures, limiting sensing applications towards complex biological targets. Herein, the MOF-enzyme hybrid nanosystem was assembled into 3D porous conductive supports via a controllable physical embedding method, displaying high enzymatic loading, stability and cascade catalytic performance. The modified MOFs combing with enzymes served as a sensing reaction system, and the conductive hollow fiber membranes (HFMs) served as a functional platform. The multifunctional device integrates pumpless hydrodynamic transport, interconnected conductive polymer, and blood separation modules, showing fast capillary fluid flow, trace sampling (3 μL), high selectivity and accuracy. The linear sensing range was in 2–24 mM glucose, 0.05–6 mM lactic acid, and 0.1–10 mM cholesterol, respectively, with sensitivities of 24.2, 150, 73.6 nA mM−1. Furthermore, this strategy of modular assembly of biosensing array can easily implement multiplex metabolites detection simultaneously.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.