Abstract

In the current work, the ternary TiO2@C/FeTiO3 (TCF) hollow nanotubes are synthesized using MOF-Fe nanorods as a sacrificial template and precursor via the thermal carbonization under N2 atmospheres. Due to such delicate structure features that consist of hollow needle-like framework, middle conductive-layer carbon and monodisperse FeTiO3 nanoparticles embedded on carbon layer, the hollow TCF composites can effectively harvest full spectrum light energy, enhance the interfacial charge separation and suppressed the recombination of photogenerated electron-hole pairs, resulting in enhanced photoelectrocatalytic (PEC) activity. Among as-synthesized samples, TCF-20% photoanode exhibits the best performance towards the degradation of phenol under full spectrum light irradiation with an anodic bias of 1.5 V vs. SCE and the degradation rate constant is 0.586 h−1, which is 2.75 times larger than that of the corresponding sum of both EC and PC process. In addition, triple synergistic effects of the possible mechanism with the enhancement of PEC activity was proposed on the basis of PEC degradation results. This work also opens a new insight for synthesis of photocatalysts based on novel MOFs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.