Abstract

A highly ordered titanium dioxide nanotube arrays (HOTDNA) electrode was prepared in hydrofluoric acid solution by electrochemical anodization technique on a pure titanium sheet. The HOTDNA electrode was characterized by FE-SEM microscopy, X-ray diffraction, and UV-vis spectra. The linear-sweep photovoltammetry response on the HOTDNA electrode is presented in this work. The photogenerated current of 0.3 mA/cm2 was observed significantly upon illumination with applied potential of 0.5 V in the UV regions at the central wavelength of 253.7 nm. Photoelectrocatalytic (PEC) and photocatalytic (PC) activities of the HOTDNA electrode were evaluated in the degradation of methyl orange (MeO) in aqueous solution. A set of optimized conditions such as anodic potential, calcinations temperature, and MeO concentration on the PEC activity was investigated. The PEC and PC activities of HOTDNA electrode were compared. We concluded that the HOTDNA electrode was an effective photoelectrode for achieving an enhanced MeO degradation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.