Abstract

Moduli fields, which parameterize perturbative flat directions of the potential in supersymmetric theories, are natural candidates to act as inflatons. An inflationary potential on moduli space can result if the scale of dynamical SUSY breaking in some sector of the theory is determined by a moduli dependent coupling. The magnitude of density fluctuations generated during inflation then depends on the scale of SUSY breaking in this sector. This can naturally be hierarchically smaller than the Planck scale in a dynamical model, giving small fluctuations without any fine tuning of parameters. It is also natural for SUSY to be restored at the minimum of the moduli potential, and to leave the universe with zero cosmological constant after inflation. Acceptable reheating can also be achieved in this scenario.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call