Abstract

We argue that in the simplest version of the KKLT model, the maximal value of the Hubble constant during inflation cannot exceed the present value of the gravitino mass, H< m_{3/2}. This may have important implications for string cosmology and for the scale of the SUSY breaking in this model. If one wants to have inflation on high energy scale, one must develop phenomenological models with an extremely large gravitino mass. On the other hand, if one insists that the gravitino mass should be O(1 TeV), one will need to develop models with a very low scale of inflation. We show, however, that one can avoid these restrictions in a more general class of KKLT models based on the racetrack superpotential with more than one exponent. In this case one can combine a small gravitino mass and low scale of SUSY breaking with the high energy scale of inflation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.