Abstract

We study the effect of thermal corrections on the evolution of moduli in effective supergravity models. This is motivated by previous results in the literature suggesting that these corrections could alter and even erase the presence of a minimum in the zero temperature potential, something that would have disastrous consequences in these particular models. We show that, in a representative sample of flux compactification constructions, this need not be the case, although we find that the inclusion of thermal corrections can dramatically decrease the region of initial conditions for which the moduli are stabilized. Moreover, the bounds on the reheating temperature coming from demanding that the full, finite temperature potential, has a minimum can be considerably relaxed given the slow pace at which the evolution proceeds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call