Abstract
We analyse modulational instability (MI) of electromagnetic waves in a large variety of optical fibers having different refractive-index profiles. For the normal-, anomalous-, and zero-dispersion regimes of the wave propagation, we show that whenever the second-order dispersion competes with higher-order dispersion (HOD), propagation of plane waves leads to a rich variety of dynamical behaviors. Most of the richness comes from the existence of critical behaviors, which include situations in which the HOD suppresses MI in the anomalous dispersion regime, and other situations in which the HOD acts in the opposite way by inducing non-conventional MI processes in the normal- and anomalous-dispersion regimes. We show that non-conventional MI sidebands are more prone to Raman-induced degradations than ordinary MI sidebands can be.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.