Abstract

This paper presents a new modulation and control strategies for the high-frequency link matrix converter (HFLMC). The proposed method aims to achieve controllable power factor in the grid interface as well as voltage and current regulation for a battery energy storage device. The matrix converter (MC) is a key element of the system, since it performs a direct ac to ac conversion between the grid and the power transformer, dispensing the traditional dc-link capacitors. Therefore, the circuit volume and weight are reduced and a longer service life is expected when compared with the existing technical solutions. A prototype was built to validate the mathematical analysis and the simulation results. Experimental tests developed in this paper show the capability of controling the grid currents in the synchronous reference frame in order to provide grid services. Simultaneously, the battery current is well regulated with small ripple, which makes this converter ideal for battery charging of electric vehicles and energy storage applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call