Abstract

Grb10 (growth factor receptor-bound protein 10)-interacting GYF protein 1 (GIGYF1) can modulate insulin-like growth factor 1 receptor (IGF1R) signaling pathway, which plays an important role in regulating diabetes-associated cognitive impairment, by linking to Grb10 adapter. However, it remains unclear whether endogenous GIGYF1 expression is associated with the development of diabetes-related cognitive impairment. In this study, we measured the expression level of GIGYF1, Grb10, phosphorylated IGF1R/IGF1R, phosphorylated AKT serine/threonine protein kinase/protein kinase B (AKT)/AKT, and phosphorylated extracellular signal-regulated kinase (ERK)/ERK in human neuroblastoma SHSY-5Y cells. Meanwhile, we detected cell apoptosis, proliferation, and migration. Our results showed that the percentage of apoptotic cells increased along with the increasing concentrations of glucose (0-200 mM). The expression of GIGYF1 had a significant increase in the presence of 25 mM concentration of glucose in SHSY-5Y cells. In addition, high glucose augmented the expression of IGF1R and Grb10, but decreased the expression of p-IGF1R, p-AKT, and p-ERK. However, GIGYF1 knockdown reversed the decline in the expression of p-IGF1R, p-AKT, and p-ERK. In addition, knocking down GIGYF1 promoted the proliferation and migration of SHSY-5Y cells, but inhibited the apoptosis in SHSY-5Y cells. These results demonstrate that the expression of GIGYF1 can regulate IGF1R signaling pathway in high glucose-induced SHSY-5Y cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.