Abstract

The effect of noradrenaline on the volume-sensitive chloride current (I(Cl(swell))) was studied with conventional whole-cell recording techniques in freshly dispersed isolated smooth muscle cells of the rabbit portal vein. In the absence of receptor antagonists, noradrenaline produced an increase in the amplitude of I(Cl(swell)) in some cells and a decrease in others. In the presence of the beta-adrenoceptor antagonist propranolol, noradrenaline increased I(Cl(swell)) and in the presence of the alpha(1)-adrenoceptor antagonist prazosin, noradrenaline reduced I(Cl(swell).) The phospholipase C (PLC) inhibitor U73122 reduced the amplitude of I(Cl(swell)) whereas the inactive analogue U73343 had no effect. The phorbol esters phorbol-12-myristate-13-acetate (PMA) and phorbol-12,13-dibutyrate (PDBu) increased the amplitude of I(Cl(swell)) by approximately 60 and 100 %, respectively, in a voltage-independent fashion. Inhibitors of protein kinase C (PKC) chelerythrine and calphostin-C decreased the amplitude of I(Cl(swell)) in a concentration-dependent but voltage-independent manner. Bath application of 8-Br-cAMP decreased I(Cl(swell)) by about 60 % whereas the inhibitor of protein kinase A (PKA) KT5720 increased the amplitude of I(Cl(swell)) by approximately 80-90 %. In the presence of propranolol, chelerythrine prevented the increase of I(Cl(swell)) by noradrenaline; in the presence of prazosin, KT5720 blocked the inhibitory action of noradrenaline. The results show that in rabbit portal vein myocytes noradrenaline enhances I(Cl(swell)) by acting on alpha(1)-adrenoceptors and reduces I(Cl(swell)) by stimulating beta-adrenoceptors. The data suggest that the potentiating and inhibitory effects of noradrenaline are mediated, respectively, by PKC and PKA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.