Abstract
It has been suggested that L-type Ca(2+) channels play an important role in cell swelling-induced vasoconstriction. However, there is no direct evidence that Ca(2+) channels in vascular smooth muscle are modulated by cell swelling. We tested the hypothesis that L-type Ca(2+) channels in rabbit portal vein myocytes are modulated by hypotonic cell swelling via protein kinase activation. Ba(2+) currents (I(Ba)) through L-type Ca(2+) channels were recorded in smooth muscle cells freshly isolated from rabbit portal vein with the conventional whole cell patch-clamp technique. Superfusion of cells with hypotonic solution reversibly enhanced Ca(2+) channel activity but did not alter the voltage-dependent characteristics of Ca(2+) channels. Bath application of selective inhibitors of protein kinase C (PKC), Ro-31-8425 or Go-6983, prevented I(Ba) enhancement by hypotonic swelling, whereas the specific protein kinase A (PKA) inhibitor KT-5720 had no effect. Bath application of phorbol 12,13-dibutyrate (PDBu) significantly increased I(Ba) under isotonic conditions and prevented current stimulation by hypotonic swelling. However, PDBu did not have any effect on I(Ba) when cells were first exposed to hypotonic solution. Furthermore, downregulation of endogenous PKC by overnight treatment of cells with PDBu prevented current enhancement by hypotonic swelling. These data suggest that hypotonic cell swelling can enhance Ca(2+) channel activity in rabbit portal vein smooth muscle cells through activation of PKC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.