Abstract

Plasmonic nanocavities can effectively modulate the upconversion luminescence properties of lanthanide doped upconversion nanocrystals (UCNCs), which not only enhances the luminescence intensity, but also modifies the luminescence spectrum. However, currently reported studies of upconversion luminescence spectrum modulation by using nanocavities are mainly based on ensemble experiments. Compared with ensemble experiments, single-particle experiments facilitate the comparative studies for the same upconversion nanocrystal and therefore the influence of inhomogeneity in ensemble samples can be avoided. Here in this work, we couple a single particle of Yb<sup>3+</sup>/Tm<sup>3+</sup> co-doped nanocrystal with a plasmonic nanocavity composed of a single gold nanorod by using the in-situ nano-manipulation technique based on an atomic force microscope. Experimentally, we compare the upconversion luminescence spectra, upconversion luminescence lifetimes and excitation-power dependent upconversion luminescence intensities of the same single nanocrystal before and after coupling with the single gold nanorod. The experimental measurements are consistent with the theoretical calculations from rate equations combined with electromagnetic simulations. The results indicate that the plasmaonic nanocavity modulated nanocrystal upconversion luminescence spectrum is the combined result of three effects: the excitation field enhancement effect, the Purcell effect and the change of radiation efficiency.

Highlights

  • The results indicate that the plasmaonic nanocavity modulated nanocrystal upconversion luminescence spectrum is the combined result of three effects: the excitation field enhancement effect, the Purcell effect and the change of radiation efficiency

  • (Center for Quantum Optical Science, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China) ( Received 5 August 2021; revised manuscript received 24 September 2021 )

Read more

Summary

Uncoupled Coupled

图 1 实验系统和样品 (a) 实验系统和样品示意图, 其中 DM 代表二向色镜, M 代表反射镜, 插图为核@壳@壳结构上转换纳 米晶的结构示意图 (黄色为 Yb3+ - Tm3+ 共掺杂层); (b) 单颗粒上转换纳米晶 (灰色线框)、单根金纳米棒 (黑色线框) 和两者耦合. Yb3+离子吸收一个 980 nm 波长 的光子从基态 2F7/2 跃迁到激发态 2F5/2, 其中激发 强度以 PYb 表示, 然后通过 Yb3+ → Tm3+ 的能量转 移过程将能量传递给 Tm3+ 离子 [45], Tm3+ 离子吸 收两个光子跃迁到第二亚稳态 3H4( Tm3+ 先吸收一 个光子从基态 3H6 跃迁到 3H5 态, 然后迅速弛豫到 第一亚稳态 3F4, 随后再次吸收一个光子后从 3F4 态跃迁到 3F2, 3 态, 然后再次迅速弛豫到第二亚稳 态 3H4). 金纳米棒对纳米晶发光光谱的调控主要体现 在三方面效应: 1) 金纳米棒的等离激元共振模式 增强纳米晶处的局域激发场, 导致激发增强; 2) 金 纳米棒的等离激元共振模式导致 Purcell 效应, 加 快相关能态的辐射跃迁速率 [35,47], 进而导致各能态 粒子数分布的变化和荧光量子效率的变化; 3) 由 于金纳米棒的欧姆损耗 (由金的介电常数虚部引 起), 与金纳米棒耦合后上转换系统的辐射效率会 发生变化. 当平面波的偏振平行于金纳米棒 的长轴时, 模拟结果如图 2(b) 中的上图所示, 纳米 晶所处位置的局域电磁场表现为增强效应, 此时纳 米晶中心位置局域电场强度增强约 14 倍. 由于局域激发场增强 效应, 激发强度 PYb 将会被增强, 更多的 Yb3+离子 s 跃迁到激发态 2F5/2. 当激发偏振垂直于金纳米棒 s 长轴时, 模拟结果如图 2(b) 中的下图所示, 此时纳 e 米晶处几乎没有场增强效应. 考虑到离子取向随机, 图 2(c) 中 Purcell 系数为 x, y, z 三个方向偶极子 Purcell 系 数的平均值. 廷矢量面积分. 考虑到离子取向随机, 图 2(c) 中 Purcell 系数为 x, y, z 三个方向偶极子 Purcell 系 数的平均值. 为简单起见, 近似以纳米晶中心处的 Purcell 效应代表掺杂层中所有离子的平均 Purcell

Purcell factor Radiation efficiency
In Press
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call