Abstract

Upconversion nanocrystals (UCNCs) hold promise for bioimaging, solar cells, photocatalysis and volumetric displays. However, their upconversion luminescence intensities are usually low due to the weak and narrowband near-infrared absorption of lanthanide ions. Herein, we introduce and validate a strategy to hugely enhance upconversion luminescence intensity by using an organic near-infrared dye as an antenna to sensitize core/shell UCNCs. The dye can increase absorptivity and broaden the absorption spectrum of the UCNCs. Such dye sensitization, in combination with a core/shell structure, can tremendously enhance the upconversion luminescence (UCL) intensity of the UCNCs. The UCL intensity of dye-sensitized UCNCs excited at 820 nm is 800-folds higher than that of pure UCNCs excited at 980 nm. Further enhancement can be obtained by optimization of the dye emission and UCNC absorption spectral overlap. Moreover, the proposed approach can be extended to cover any part of the solar spectrum by using a set of dyes. This work provides new insights into the efficient enhancement of upconversion luminescence of the UCNCs and facilitates their applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call